pub trait Trainable<N, A, R>where
    N: Neural,
    A: Adaptable<N, R>,
    R: Responsive<N>,{
    // Required methods
    fn train(
        &mut self,
        neurons: &mut N,
        adaptation: &mut A,
        feature: &mut R,
        patterns: &ArrayView2<'_, f64>
    );
    fn clone_dyn(&self) -> Box<dyn Trainable<N, A, R> + Send>;
}
Expand description

Interface for structures encapsulating algorithms for training from data sets

Required Methods§

source

fn train( &mut self, neurons: &mut N, adaptation: &mut A, feature: &mut R, patterns: &ArrayView2<'_, f64> )

source

fn clone_dyn(&self) -> Box<dyn Trainable<N, A, R> + Send>

Trait Implementations§

source§

impl<N, A, R> Clone for Box<dyn Trainable<N, A, R> + Send>where N: Neural, A: Adaptable<N, R>, R: Responsive<N>,

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<N, A, R> Trainable<N, A, R> for Box<dyn Trainable<N, A, R> + Send>where N: Neural, A: Adaptable<N, R>, R: Responsive<N>,

source§

fn train( &mut self, neurons: &mut N, adaptation: &mut A, feature: &mut R, patterns: &ArrayView2<'_, f64> )

source§

fn clone_dyn(&self) -> Box<dyn Trainable<N, A, R> + Send>

Implementations on Foreign Types§

source§

impl<N, A, R> Trainable<N, A, R> for Box<dyn Trainable<N, A, R> + Send>where N: Neural, A: Adaptable<N, R>, R: Responsive<N>,

source§

fn train( &mut self, neurons: &mut N, adaptation: &mut A, feature: &mut R, patterns: &ArrayView2<'_, f64> )

source§

fn clone_dyn(&self) -> Box<dyn Trainable<N, A, R> + Send>

Implementors§

source§

impl<N, A, R> Trainable<N, A, R> for IncrementalLearningwhere N: Neural, A: Adaptable<N, R>, R: Responsive<N>,